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ABSTRACT

This paper describes a nearly optimal auction mechanism that does not require previous knowledge of
the distribution of values of potential buyers. The mechanism we propose builds on the new literature on
the elicitation of information from experts. We extend the latter to the case where the secret information
shared by the experts - potential buyers in our model - can be used against them if it becomes public
knowledge.
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1. Introduction

The optimal mechanism to sell a single object requires prior
knowledge of the distributions of values of potential buyers.! In
the symmetric independent private value model, for instance, the
optimal direct mechanism can be obtained by using a second price
sealed bid auction with a specific reservation price. The reserva-
tion price depends on the distribution of bidder values. The con-
struction of an optimal auction for the asymmetric case is similarly
tethered to the seller’s knowledge of the value distribution of each
individual bidder. What if the seller does not know these distri-
butions? We provide an almost optimal mechanism for an unin-
formed seller in a context where the group of potential buyers are

* We are grateful to Mark Walker and Tilman Borges for comments.
* Corresponding author. Tel.: +1 734 764 7438; fax: +1 734 764 2769.
E-mail addresses: nlazzati@umich.edu (N. Lazzati), mjvanessen@cba.ua.edu
(M. Van Essen).
1 See Laffont and Maskin (1980), Myerson (1981), or Riley and Samuelson (1981).
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aware of the value distributions. In terms of Krishna (2010), our
mechanism has the advantage of being “detail-free”.

The nearly optimal auction we propose consists of two mech-
anisms: an elicitation mechanism and an auction. The aim of the
elicitation mechanism is to recover the distributions of values of
the potential buyers whereas the aim of the auction is to maximize
expected revenue. These two mechanisms are intimately related.
The details of the auction depend on the distributions obtained
from the bidders in the elicitation mechanism, and the lottery pay-
offs of the elicitation mechanism depend on the bids placed by the
potential buyers in the auction. Despite the informational disad-
vantage placed on the seller, the auction we propose almost always
obtains the maximal expected revenue for the seller at a near zero
cost. Moreover, the induced game among potential buyers is indi-
vidually rational and strict incentive compatible.

The elicitation part of our mechanism builds on the recent lit-
erature about information elicitation from experts. Karni (2009)
introduces an incentive compatible mechanism for eliciting the
subjective probabilities of an agent about a finite number of
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events.? Qu (2012) extends Karni’s mechanism to the elicitation of
an agent’s beliefs about the general distribution of a random vari-
able. These papers assume that the expert has no stake in the ran-
dom behavior of interest.? In our model, the information disclosed
by the experts - the bidders in the auction - will be used by the
seller against them. We show that Karni and Qu'’s contributions can
be extended to this delicate situation whenever there are at least
two experts or bidders in our context. In this sense, our approach
formalizes the well-known phrase.
A secret between more than two is not a secret.

There are a few other papers related to our idea. The recent liter-
ature on the econometrics of optimal auctions solves the problem
of the uninformed seller by using a sequential auction mechanism
(see, e.g., Paarsch, 1997). That is, this literature assumes that the
seller runs (or has run) an initial auction, obtains some data, and
then uses this information to recover the value distributions of the
bidders. The seller then computes and conducts an optimal new
auction for subsequent units of the good. This procedure is costly in
terms of foregone revenue and may not be practical if the seller has
a unique item and cannot therefore take advantage of the obtained
information. Segal (2003) addresses the same issue by providing
a mechanism that sets a price for each buyer on the basis of the
demand distribution inferred statistically from other buyers’ bids.*
The resulting profit converges to the optimal monopoly profit with
known demand as the number of buyers goes to infinity. We as-
sume that consumers know the distribution of valuations. Under
this condition, the advantage of our approach over the one of Se-
gal is that, in our set-up, profits are almost optimal even when the
number of bidders is very small (i.e., two bidders in the symmet-
ric model and three bidders in the asymmetric one). Brooks (2013)
has recently considered a similar problem but proposed a very dif-
ferent solution. Our mechanism is simpler and the seller controls
(via the lottery prizes) the maximum cost he could incur to recover
the valuations of potential consumers. On the other hand, Brooks’
mechanism allows for certain type of correlation. The project fi-
nally relates to the newer literature on the robust mechanism de-
sign (see, e.g., Bergemann and Morris, 2005 and Borges, 2013). The
latter builds on the observation that the mechanism design liter-
ature assumes too much common knowledge of the environment
among the players and planner and aims at relaxing this restric-
tion. We keep common knowledge of the environment among the
players but relax the information requirement often imposed on
the seller.

2. Almost optimal mechanism for the symmetric model

We model a situation in which the seller has a single good for
sale and there are n > 2 potential buyers with quasi-linear pref-
erences for the object. Bidder i assigns a value x; to the item. Each
bidder’s value is unknown to the seller and to the other bidders.
Their values are independent and identically distributed according
to a cumulative distribution function F : [x, X] — Ry with —oo <
X < X < 00. The probability density function of F, f, is continuous
and strictly positive everywhere on [x, x]. The problem is regular
in the sense that the virtual valuation function

C[1-F®)
fx)

is strictly increasing in x. The potential buyers are aware of the dis-

tribution of values and this awareness is common knowledge. Our

Ve (x) =X

2 This mechanism is related to the elicitation procedure presented by Becker et al.
(1964). Recently, Demuynck (2013) illustrated how Karni’s mechanism may be used
for eliciting the mean or quantiles of a random variable.

3 O’Hagan et al. (2006) survey this literature which spans several fields.

4 See also Hartline (2012) who discusses approximation in the mechanism design
and surveys some of this new literature.

modeling assumptions differ from the standard ones in that the
seller does not know F.

The goal of the seller is to maximize expected profits. If the
seller knew F, then a second price auction with reserve price r* im-
plicitly defined by ¥y (r*) = 0 would be the optimal direct mech-
anism. However, in our model, the seller does not know F and,
hence, cannot directly set an optimal reservation price. We now
provide a mechanism in which the seller elicits F from the potential
buyers, at an almost zero cost, and uses this information to imple-
ment a second price auction with a reservation price that is almost
always equal to r*.

The nearly optimal auction we propose consists of two in-
terrelated mechanisms: an elicitation mechanism and a standard
auction. The elicitation mechanism is, essentially, a stochastic
Vickrey-Clarke-Groves (VCG) mechanism conducted between
each bidder and a dummy bidder for a lottery payoff. In the auction
mechanism, the item is allocated according to a standard second
price auction with a stochastic reserve price. The two mechanisms
are intimately related: first, the reserve price in the auction de-
pends on the distributions obtained from the bidders in the elic-
itation mechanism. Second, the lottery payoffs of the elicitation
mechanism depend on the bids placed by the bidders in the auc-
tion. The mechanism we offer provides strong incentives for each
bidder to report truthfully both own valuation and the distribu-
tion of values if it is believed that at least one other will do so.
Specifically, truthfully report of distributions and values is a strict
Bayesian Nash equilibrium of the induced game.

The rules of the game are as follows. Each agent i submits a
message to the seller containing two pieces of information: a non-
negative bid, b;, and a cumulative distribution function, G;. The
seller takes these messages and, for each i, computes the largest
root of ¥, (x) = 0 that we indicate by r;. If ¥, (x) has no root,
then the seller sets r; = 0. Thus, we can think of r; as the reserve
price suggested by bidder i. Then the seller draws a random vec-
tor (p, t, k). It is common knowledge that p and ¢ are i.i.d. draws
from the uniform distribution on [0, 1] and k is a random realiza-
tion from a distribution H with full support on (—o0o, c0). The re-
alization p is used to set-up the reserve price in the auction and
the numbers (t, k) are used in the elicitation mechanism. We next
formalize the two related mechanisms.

Auction mechanism: the good is allocated according to a second
price auction with a stochastic reserve price given by

N max{ry,r,...,r,} ifp<p
— 10 otherwise

where p is known by all the bidders. Thus, p is the probability that
the reserve price be equal to max{ri, 12, . . ., ,} and the probability
that r be equal to zero is just 1 — p. Once r is defined, the item is al-
located according to the usual rule. The fact that the reserve price is
zero with strictly positive probability guarantees that each bidder
has strict incentives to report his value even when it is very small.

Elicitation mechanism: each bidder in the auction enters into a lot-
tery for a chance to win a prize w > 0. For bidder i, the lottery
depends on both G; and (t, k). It is determined as follows: let E; be
the event that bidder i + 1’s bid, b; 4, falls in the region (—oo, k],
withn+ 1 = 1. We define L;(t, w) as a lottery where bidder i wins
the prize w with probability t and it wins 0 with probability 1 — t.
If bidder i submits that the distribution G; and (t, k) are realized,
then he receives the following lottery payoff

e _ JwlE)  ifGik) >t
mi (G, k) = {Li(t7 w) otherwise

where 1(.) is the indicator function that takes a value of 1 if the
event E; occurs and O otherwise. This lottery mechanism is similar
to the mechanisms proposed by Qu (2012) in the context of elicit-
ing probability distributions from experts.
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The next proposition states that, in the proposed mechanism,
submitting own values and F is a strict Bayesian Nash equilibrium.

Proposition 1. For any w > 0, the strategy profile in which each
bidder i submits b; = x; and G; = F is a strict Bayesian Nash equi-
librium for the nearly optimal auction. In addition, this mechanism is
individually rational.

Proof. Let us assume that each bidder j # i submits b; = x; and
Gj = F. Letr satisfy W¢(r) = 0. We next show that b; = x; and
G; = F is a strict best-response for bidder i. Independent of G;, b;
= x; is clearly always optimal for agent i. Moreover, since the re-
serve price is zero with strictly positive probability, bidder i has
strict incentives to report b; = x; even if x; < r. Therefore, for
each reserve price r, the expected profits of bidder i (if he reports
b; = x;) are given by

u; (xi, Gi)
Yi(Gy)
XiF (x)" ! — [rF(r)"1

ifx; <r

Xj
+ f z(n— 1)f(z)F(z)N‘2dz] +yi(G) ifx >
r(Gj)
where y;(G;) is the expected income determined by the lottery.
Recall that we assumed all bidders different from i report F.> By
choosing G;, bidder i can only distort r up. This type of behavior can
never increase bidder i's expected payoff. We next show that it is
strictly optimal for i to submit F as well.
Assume that bidder i submits G;. Then, for each realization k, his
expected payoff from the lottery is given by

E; [m; (G, t, k)] = Gi(k)wF (k) + (1 — Gi(k))
1
X / wt/ (1 — Gi(k)) dt
Gi(k)

= Gi(k)wF (k) +w/2 — w (Gi(k))? /2.

This function is strictly concave in G;(k). From the first order con-
dition, the strict global maximum is G;(k) = F (k). Since this is true
for all k and H has full support on all (—oo, co), submitting F is a
strict best response for bidder i.

The fact that the mechanism is individually rational holds as if
agent i bids his value, then his smallest possible payoffis0. B

As we mentioned earlier, if the seller knew F, then a second
price auction with reservation price r* implicitly defined by Wg (r*)
= 0 would be the optimal direct mechanism. The mechanism we
have proposed for the uninformed seller is nearly optimal for two
reasons: first, by choosing p close to one, the seller will almost
always implement the optimal auction. Second, the maximum
possible payment he can incur (nw > 0) can be made arbitrar-
ily small.®As a practical concern, however, there is some question
about how bidders would submit a distribution to an auctioneer.
While we do not address this issue directly, we can report that
there is a literature on this problem and that procedures for elic-
iting distributions have been developed and used in practice (see,
e.g., O’'Hagan et al., 2006).

The next section shows that our proposed mechanism can be
easily extended to the case of asymmetric distributions if there
are at least three potential buyers. Before doing so, we explain

5 Note this argument holds if even if only one other bidder has submitted
truthfully.

6 Note the seller could reduce the variance of realized lottery payoffs by running
independent lotteries across agents—i.e., by computing independent random draws
(t;, k;) for each bidder i.

that for the symmetric model there is a simpler mechanism that
achieves the same result. This mechanism does not require bidders
to submit distributions to the seller.

An alternative mechanism: in the symmetric model, a nearly opti-
mal mechanism can be constructed using a simpler message space.
Specifically, we next show that we can substitute the requirement
to submit full distributions to the seller for one in which agents
simply report bids and reservation prices.” Let us consider a mech-
anism where agent i submits a message to the seller containing
a non-negative bid, b;, and a non-negative suggested reservation
price r;—this is just a simple descriptive statistic of the underline
distribution. The seller allocates the item according a second price
auction with a stochastic reserve r as previously defined. In ad-
dition, each bidder enters a lottery for a prize wr;. This prize is
awarded to agent i in the event that bidder i + 1’s bid, b;,1, falls
in the region [r;, 00), and it is otherwise equal to zero. As before,
we definen+1=1.

We next explain that the message profile where all bidders sub-
mit their true values and the optimal reserve price r* is a strict
Bayesian Nash equilibrium of this auction as well. Suppose each
bidder j # i chooses according to the suggested Bayesian Nash
equilibrium. Then, selecting b; = x; is strictly optimal for agent i.
Since bidder i 4 1 is reporting truthfully, from the perspective of
bidder i, his bid is distributed according to F. Therefore i’s expected
lottery payoff from reporting r; is equal to wr; (1 — F(r;)). This ex-
pected payoff is clearly maximized at r; = r*. Finally, for all j # i,
we have r; = r*. It follows that agent i can only affect r by choos-
ingr; > r*.This would lower both agent i’s expected auction payoff
and his expected lottery payoff. Hence, (b;, 1;) = (x;, r*) is a strict
best response and the result is established.

Unfortunately, the simpler mechanism we just discussed does
not directly extend to the situation where bidder’s types are asym-
metrically distributed. The next section shows that the opposite is
true regarding our initial mechanism. The only relevant difference
is that for the following case we need three bidders, as compared
to only two, for the mechanism to work.

3. Almost optimal mechanism for the asymmetric model

The main idea in our proposed mechanism can be used to de-
rive a nearly optimal auction for an uniformed seller facingn > 3
heterogeneous bidders, where the value for the item of each bidder
i derives from the distribution F; on [x, X]. Here again, we assume
that ¥, (.) is strictly increasing for all i < n.

The rules of the game are as follows: each bidder i simultane-
ously submits a type b; and a cumulative distribution function G;
for each j # ito the seller. The seller takes these messages and, for
each i, computes the price

pi(b_;) = inf{z;|¥(z)) > ¥(by)
forallj < n,j # iand ¥(z;) > 0},
whereb_; = (by, ..., bi_1, bit1, ..., by) and
lj]i(x) = maX{WG“(X), RN} lI/G(f_]),‘ (X)7 WG(,‘_H)I'(X)s RN} WGm‘ (X)}
forallx € [x, X].

In addition, the seller draws a random vector (p, t, k) as in the
previous section.
Auction mechanism: the good is allocated via a simple stochastic
auction. Specifically, if p < p < 1, then the good is assigned to bid-
derionly if ¥;(b;) > max;<njx ¥j(b;) and ¥;(b;) > 0in which case
he pays p;(b_;). If bidder i does not get the item, then he pays 0. On

7 We are grateful to an anonymous referee for suggesting this mechanism to us.
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the other hand, if p > p, then the good is allocated according to a
second price auction using the submitted b = (bq, b,, ..., by) as
the bids. As before, we assume that p is known by all the bidders.

Elicitation mechanism: upon submitting profiles, all the bidders re-
ceive their payoffs from participating in the auction and enter into
n — 1 lotteries each of which provides the bidders a chance to win
a payment w > 0. For each j # i, the lottery for bidder i depends
on G and (t, k). Let E;; be the event that bidder j's reported type b;
falls in the region (—oo, k]. We define L;(t, w) as a lottery where
bidder i wins the prize w with probability t and he wins 0 with
probability 1 — ¢. If bidder i submits the distribution G; and (t, k)
are realized, then he receives the following lottery payoff

Lo [wiE) Gk > ¢
m; (G, t. k) = {L,-j(t, w)  otherwise

where 1(.) is the indicator function that takes a value of 1 if the
event E; occurs and 0 otherwise.

Truth telling is also a strict Bayesian Nash equilibrium of this
auction. To see this, suppose each bidder j # i reports truthfully
(i.e., each bidder reports his type and the true value distributions
of the other bidders to the seller). Now bidder i can only increase
¥;(x;) with his report of G;;. Doing so is not optimal as it increases
his payment when he wins the auction and decreases his chances
for winning. In addition, since each lottery is structured as the one
in Proposition 1, he has strict incentives to report the true value
distributions—i.e., G; = F; for all j # i. Hence, we get that ¥; = ¥;
for all i. The realized auction is therefore either Myerson’s 1981

optimal auction or, with a very small but positive probability, a
second price auction without areserve price. It follows that i’s strict
optimal bid is b; = x;. Finally, since w can be any positive number,
the seller total cost of extracting information from the bidders can
be made arbitrarily small by choosing a sufficiently small prize w.
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